大模型轻量化技术 :让AI【?跑的更快】更省

2025-07-23 05:59:16      来源:龙泉新闻网

随着大模型参数规模不断膨胀,其高昂的计算资源需求和低效的运行速度成为制约其广泛应用的瓶颈。本文将为您深入剖析大模型轻量化技术,供大家参考。

当前大模型如GPT-4已突破万亿级别参数量、如DeepSeek-R1已突破千亿级别参数量,这样的参数规模使得大模型的运行需要占用巨大的计算资源,同时训练和推理的效率低下。

以GPT-4的1.8万亿参数为例,模型参数FP32全精度对应的理论显存占用是7.2TB,需至少90张NVIDIAH10080GBGPU,而一块H100的GPU单价在$20,000-$40,000。若不考虑大模型轻量化及训练推理加速技术,单次生成1ktokens的推理延迟约为10秒,单次推理成本约为$0.5。

大模型的资源消耗量级是远超移动设备与边缘计算硬件的承载极限的,比如常见的智能手机通常仅有12-24GB内存。大模型对资源的需求和端侧设备只能提供有限算力的矛盾,催生了一批轻量化的技术手段。这里的轻量化是指,对大模型施加参数调整、训练优化等手段,在精度可接受的前提下,实现大模型的存储需求降低和运行效率提升。这是大模型走进手机、汽车、机器人等端侧设备的必经之路。

本文将通俗介绍大模型的四种轻量化技术,分别是蒸馏、剪枝、低秩分解和量化。

一、蒸馏

蒸馏的本质是让小型的学生模型(StudentModel)模仿大型的教师模型(TeacherModel)的决策逻辑,从而使得学生模型在保持较小规模的前提下逼近教师模型的推理能力。

传统的蒸馏机制在于引入软标签(SoftLabels)作为学生模型的训练目标。这里简要解释下软标签,如果模型直接判别输入图像是“猫/狗”,这类非0即1的输出可以看作是硬标签(HardLabels),比如模型输出的的硬标签是[0,1],代表模型判别输入图像是猫。软标签是模型输出的概率分布,当让模型判别一只老虎时,模型可能输出在猫、狗两个类别的概率值,此时软标签是[0.3,0.7],这种软标签隐含了类别间的相似性知识,比如老虎更接近猫的相貌,同时接近狗的体格。

在训练学生模型时,构造的训练目标函数是学生模型预测概率分布与教师模型预测概率分布的KL散度。在训练过程中,通过不断降低KL散度,让学生模型预测的概率分布逼近于教师模型预测的概率分布,从而确保学生模型逐步学习到教师模型的知识。

实际在大模型蒸馏过程中,学生模型还可以通过数据蒸馏的方式学习教师模型的推理能力。比如在论文《DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearning》中,首先使用DeepSeek-R1作为教师模型,生成包含推理过程(CoT)和答案的高质量训练数据(共80万条样本),然后通过有监督微调的手段对Qwen2.5、Llama3等基础模型进行蒸馏。如下图所示,蒸馏之后的Qwen2.5、Llama3在数学推理和编码任务取得了很好的表现,说明了小模型性能是可以通过蒸馏手段提升的。

二、剪枝

剪枝的灵感源于神经科学。人类在婴儿期会产生大量的突触连接,但是在成长过程中低频的突触连接会逐渐退化,而高频的突触连接会保留下来。在大模型的深度神经网络架构中,我们可以删除模型中某些结构或者冗余参数来达到给大模型“瘦身的效果”,相应的有结构化剪枝、非结构化剪枝两种技术手段:

非结构化剪枝:随机删除单个权重,比如小于某个阈值的权重。由于不改变模型的整体结构,剪枝之后会造成参数矩阵的稀疏性(一部分权重为0),这种稀疏性会导致普通GPU/CPU难以高效计算,需要用到专门的硬件比如NVIDIAA100TensorCoreGPU来保证性能发挥。非结构化剪枝更适用于压缩率要求较高,但硬件可控的场景,比如在数据中心内部部署大模型,并且搭配专用加速卡。

结构化剪枝:删除“结构化单元”,比如整个卷积核、注意力头、通道、甚至整个网络层。结构化剪枝后的模型结构规则与原始模型架构是兼容的,无需专用的硬件即可在普通GPU/CPU上运行。但是结构化剪枝的问题是可能导致大模型的部分功能失效,比如删除一个注意力机制模块可能丢失一部分的语义理解能力。因此,需要通过评估不同结构化单元的重要性来判断哪些结构可剪。结构化剪枝更适用于手机、汽车等端侧设备,支持实时目标检测、语音交互等任务。

三、低秩分解

大模型的参数矩阵往往是高维度的稠密矩阵,而低秩分解的思路就是通过用一些更低维度的矩阵来表达稠密矩阵,从而在损失少量精度的前提下,大幅度降低参数总量。

举例来说,假设大模型的原始参数矩阵W的维度是m*n,通过线性代数的分解方法,将W分解为两个低秩矩阵的乘积,即W=U*V。其中U的维度是m*r,V的维度是r*n,注意r是远小于m也远小于n的,此时矩阵的参数总量就从m*n下降到(m*r+r*n)。

四、量化

我们都知道大模型内部有很多参数,而这些参数的数值格式会影响到存储和计算资源的效率。量化技术就是将传统的32位浮点数(FP32)参数,替换为更低位数的数值格式,比如8位整数、4位整数、二进制等,从而减少内存占用、降低计算量,并且适配硬件的低精度指令集。

举例来说,一个FP32的参数需要4字节存储,而INT8仅需1字节,理论上可实现4倍压缩;若进一步量化到INT4,则可实现8倍压缩。同时,低精度计算的硬件效率远高于FP32精度的计算,因此量化不仅能给大模型“瘦身”,还能直接提升推理速度。以DeepSeekR3为例,模型采用FP8量化方案,并且通过混合训练方案来确保模型的精度。

从云端到边缘,从万亿参数到百万参数,大模型的轻量化技术正在加速AI的落地应用。当大模型能以0.5秒速度在千元手机完成医学影像分析,以22ms延迟在汽车芯片规避碰撞风险,以3W功耗驱动矿山机器人自主巡检——这些场景的实现,意味着AI技术的应用门槛持续降低,其实际价值将在更广泛的领域中逐步显现。

  青海将西宁机场三期扩建工程视为深度融入国家“一带一路”建设的重点工程;甘肃认为兰州中川国际机场三期工程是积极参与共建“一带一路”的有力注脚;西安和乌鲁木齐都表示,咸阳机场、天山机场的改扩建工程,能助力西安、乌鲁木齐打造“一带一路”核心枢纽。

责编:蔡雅铃编辑

关晓彤拍一部戏成功安利一把头盔伞

  博汇股份被要求补税5亿元,则是因为公司生产的重芳烃衍生品被税务部门认定需要按照重芳烃缴纳消费税,博汇股份对此不认同,最终是否补税、如何补税等仍有待税企双方良性沟通。

普京访华将停留天

  “有些地区出现了多个国际航空枢纽的格局。比如华南的广州、深圳,西南的成都、重庆、昆明,西北的西安、乌鲁木齐。但与成渝不同的是,西北地域辽阔,西安与乌鲁木齐距离非常远,两个枢纽生态位截然不同。”

同济的专业任意选到底是怎么选

  据介绍,全省夏收工作6月7日基本结束,夏粮丰收已成定局。夏播工作从5月28日大面积展开,截至6月13日,已播种面积7915.2万亩,夏播工作大头落地。初步统计,目前全省因旱不能播种面积323万亩,若未来持续无有效降水,夏播进度将会进一步放慢。

岁大爷内衣袜子混洗感染股癣

  兰州机场T1+T2面积8.9万平方米,去年吞吐量超过1700万人次,可以说不堪重负。乌鲁木齐机场T1+T2+T3面积18.48万平方米,需要承载超过2700万人次的吞吐量。

住车里程序员被质疑占用公共资源

  新疆机场集团总经理吕辉斌表示,国泰航空开通乌鲁木齐至香港航线,标志着乌鲁木齐天山国际机场的航线网络又一次升级,满足了新疆及周边地区旅客日益增长的出行需求,不仅提升了乌鲁木齐机场的国际化水平,也将进一步增强新疆的区位优势和影响力,共同助力打造乌鲁木齐成为连接亚欧区域门户复合型国际航空枢纽目标。

霍尔木兹海峡

  详细剖析两个企业补税案例,也能一定程度上消除上述担忧。枝江酒业之所以被要求补缴8500万元消费税,直接原因是审计部门发现问题,税务部门据此执行。/p>

王安宇胡先煦不打不相识

  最近两起企业补税事件引起市场关注。一是湖北枝江酒业股份有限公司被要求补税8500万元,因这笔税款被追溯至1994年,使得税务“倒查30年”成为舆论焦点。二是宁波博汇化工科技股份有限公司3月份收到当地税务要求补税5亿元的通知,最近企业宣布停产。上述两起事件,引起了一些企业人士的担忧。这些担忧包括是否存在全国性查税,不少企业担忧如果倒查多年需要补税,这对于经营困难的当下无疑是“雪上加霜”。跟多位省级、市级税务人士交流得知,目前并没有全国性查税部署。一些地方根据当地税收大数据风险提示等对个别企业查税,是日常工作,也是税务部门正常履职。毕竟税务部门主要负责税收、社会保险费和有关非税收入的征收管理,发现偷逃税、少缴税行为,理应依法制止,否则就是渎职。(第一财经)/p>

伊朗外长抵达俄罗斯

  反观乌鲁木齐,偏居西北一隅的位置,为向西开放提供了便利。李瀚明指出,与乌鲁木齐类似的其实是哈萨克斯坦阿拉木图,两座城市都位于亚欧航路的中间点。利用空客A321XLR这样的远程窄体机,阿拉木图成功开航伦敦。在国内,乌鲁木齐是唯一一个用窄体机能直飞欧洲的航空枢纽。